माना ${S_n}$ एक समान्तर श्रेणी के $n$पदों का योग दर्शाता है। यदि ${S_{2n}} = 3{S_n}$, तो अनुपात $\frac{{{S_{3n}}}}{{{S_n}}} = $
$4$
$6$
$8$
$10$
माना एक समांतर श्रेढ़ी के प्रथम $\mathrm{n}$ पदों का योग $\mathrm{S}_{\mathrm{n}}$ है। यदि $\mathrm{S}_{20}=790$ तथा $\mathrm{S}_{10}=145$ है, तो $\mathrm{S}_{15}-\mathrm{S}_5$ बराबर है :
यदि $x, y, z$ एक समांतर श्रेढी में हैं तथा $\tan ^{-1} x, \tan ^{-1} y$ एवं $\tan ^{-1} z$ भी समांतर श्रेढ़ी में हैं, तो
यदि $a\left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right), c\left(\frac{1}{a}+\frac{1}{b}\right)$ समांतर श्रेणी में हैं, तो सिद्ध कीजिए कि $a, b, c$ समांतर श्रेणी में हैं।
क्रमागत पूर्णांकों (Consecutive integers) की समान्तर श्रेणी का प्रथम पद ${p^2} + 1$ है। इस श्रेणी के $(2p + 1)$ पदों का योग है
यदि किसी समान्तर श्रेणी का $p$ वाँ पद $\frac{1}{q}$ और $q$ वाँ पद $\frac{1}{p}$ है, तो इसके $pq$ पदों का योग होगा