Gujarati
8. Sequences and Series
easy

If $\frac{{{a^{n + 1}} + {b^{n + 1}}}}{{{a^n} + {b^n}}}$ be the $A.M.$ of $a$ and $b$, then $n=$

A

$1$

B

$- 1$

C

$0$

D

None of these

Solution

(c) $\frac{{{a^{n + 1}} + {b^{n + 1}}}}{{{a^n} + {b^n}}} = \frac{{a + b}}{2}$

$ \Rightarrow $ ${a^{n + 1}} – a{b^n} + {b^{n + 1}} – b{a^n} = 0$

$ \Rightarrow $$(a – b)({a^n} – {b^n}) = 0$

If ${a^n} – {b^n} = 0$.

Then ${\left( {\frac{a}{b}} \right)^n} = 1 = {\left( {\frac{a}{b}} \right)^0}$.

Hence $n = 0$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.