If $\frac{{{a^{n + 1}} + {b^{n + 1}}}}{{{a^n} + {b^n}}}$ be the $A.M.$ of $a$ and $b$, then $n=$
$1$
$- 1$
$0$
None of these
Given sum of the first $n$ terms of an $A.P.$ is $2n + 3n^2.$ Another $A.P.$ is formed with the same first term and double of the common difference, the sum of $n$ terms of the new $A.P.$ is
If the variance of the terms in an increasing $A.P.$, $b _{1}, b _{2}, b _{3}, \ldots b _{11}$ is $90,$ then the common difference of this $A.P.$ is
Four numbers are in arithmetic progression. The sum of first and last term is $8$ and the product of both middle terms is $15$. The least number of the series is
If the sum of the first $n$ terms of the series $\sqrt 3 + \sqrt {75} + \sqrt {243} + \sqrt {507} + ......$ is $435\sqrt 3 $ , then $n$ equals
If $a _{1}, a _{2}, a _{3} \ldots$ and $b _{1}, b _{2}, b _{3} \ldots$ are $A.P.$ and $a_{1}=2, a_{10}=3, a_{1} b_{1}=1=a_{10} b_{10}$ then $a_{4} b_{4}$ is equal to