- Home
- Standard 11
- Mathematics
8. Sequences and Series
easy
The first term of an $A.P.$ of consecutive integers is ${p^2} + 1$ The sum of $(2p + 1)$ terms of this series can be expressed as
A
${(p + 1)^2}$
B
${(p + 1)^3}$
C
$(2p + 1){(p + 1)^2}$
D
${p^3} + {(p + 1)^3}$
Solution
(d) ${S_{2p + 1}} = \frac{{2p + 1}}{2}\{ 2({p^2} + 1) + (2p + 1 – 1)\,1\} $
$ = \left( {\frac{{2p + 1}}{2}} \right)\,(2{p^2} + 2p + 2) = (2p + 1)({p^2} + p + 1)$
$ = {p^3} + {(p + 1)^3}$.
Standard 11
Mathematics