Gujarati
8. Sequences and Series
medium

If $f(x + y,x - y) = xy\,,$ then the arithmetic mean of $f(x,y)$ and $f(y,x)$ is

A

$x$

B

$y$

C

$0$

D

$1$

Solution

(c) Let $x + y = u,\,\,x – y = v$

==> $x = \frac{{u + v}}{2},y = \frac{{u – v}}{2}$,

$\therefore f(u,v) = \left( {\frac{{u + v}}{2}} \right).\left( {\frac{{u – v}}{2}} \right)$

Now,$\frac{{f(x,y) + f(y,x)}}{2} = \frac{{\left( {\frac{{x + y}}{2}.\frac{{x – y}}{2}} \right) + \left( {\frac{{y + x}}{2}.\frac{{y – x}}{2}} \right)}}{2} = 0$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.