If $\log 2,\;\log ({2^n} - 1)$ and $\log ({2^n} + 3)$ are in $A.P.$, then $n =$

  • A

    $5/2$

  • B

    ${\log _2}5$

  • C

    ${\log _3}5$

  • D

    $3/2$

Similar Questions

If $\frac{1}{{p + q}},\;\frac{1}{{r + p}},\;\frac{1}{{q + r}}$ are in $A.P.$, then

If $(b+c),(c+a),(a+b)$ are in $H.P$ , then $a^2,b^2,c^2$ are in.......

If the sum of $n$ terms of an $A.P.$ is $3 n^{2}+5 n$ and its $m^{\text {th }}$ term is $164,$ find the value of $m$

Let $a, b, c, d, e$ be natural numbers in an arithmetic progression such that $a+b+c+d+e$ is the cube of an integer and $b+c+d$ is square of an integer. The least possible value of the number of digits of $c$ is

  • [KVPY 2013]

If $\log _{3} 2, \log _{3}\left(2^{x}-5\right), \log _{3}\left(2^{x}-\frac{7}{2}\right)$ are in an arithmetic progression, then the value of $x$ is equal to $.....$

  • [JEE MAIN 2021]