If $\log 2,\;\log ({2^n} - 1)$ and $\log ({2^n} + 3)$ are in $A.P.$, then $n =$
$5/2$
${\log _2}5$
${\log _3}5$
$3/2$
If $(b+c),(c+a),(a+b)$ are in $H.P$ , then $a^2,b^2,c^2$ are in.......
Let $a_n, n \geq 1$, be an arithmetic progression with first term $2$ and common difference $4$ . Let $M_n$ be the average of the first $n$ terms. Then the sum $\sum \limits_{n=1}^{10} M_n$ is
Let $3,6,9,12, \ldots$ upto $78$ terms and $5,9,13,17, \ldots$ upto $59$ terms be two series. Then, the sum of the terms common to both the series is equal to
Let $S_{n}$ denote the sum of first $n$-terms of an arithmetic progression. If $S_{10}=530, S_{5}=140$, then $\mathrm{S}_{20}-\mathrm{S}_{6}$ is equal to :
If $a_1 , a_2, a_3, . . . . , a_n, ....$ are in $A.P.$ such that $a_4 - a_7 + a_{10}\, = m$, then the sum of first $13$ terms of this $A.P.$, is .............. $\mathrm{m}$