यदि $\log 2,\;\log ({2^n} - 1)$ तथा $\log ({2^n} + 3)$ समान्तर श्रेणी में हों, तो $n =$
$5/2$
${\log _2}5$
${\log _3}5$
$3/2$
यदि $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}, a$ तथा $b$ के मध्य समांतर माध्य हो तो $n$ का मान ज्ञात कीजिए।
$p,\;q,\;r$ समान्तर श्रेणी में एवं धनात्मक हैं तो वर्ग समीकरण $p{x^2} + qx + r = 0$ के मूल वास्तविक होंगे, यदि
किसी समांतर श्रेणी के $m$ तथा $n$ पदों के योगफलों का अनुपात $m^{2}: n^{2}$ है तो दर्शाइए कि $m$ वें तथा $n$ वें पदों का अनुपात $(2 m-1):(2 n-1)$ है।
यदि ${S_n} = nP + \frac{1}{2}n(n - 1)Q$, जहाँ ${S_n}$ समान्तर श्रेणी के प्रथम $n$ पदों का योग दर्शाता है, तब सार्वअन्तर है
किसी समांतर श्रेणी का $p$ वाँ, $q$ वाँ $r$ वाँ पद क्रमशः $a, b, c$ हैं, तो सिद्ध कीजिए
$(q-r) a+(r-p) b+(p-q) c=0$