- Home
- Standard 11
- Mathematics
8. Sequences and Series
medium
Find the sum of all natural numbers lying between $100$ and $1000,$ which are multiples of $5 .$
A
$98450$
B
$98450$
C
$98450$
D
$98450$
Solution
The natural numbers lying between $100$ and $1000 ,$ which are multiples of $5,$ are $105,110,…….$ $995$
Here, $a=105$ and $d=5$
Here, $a=105$ and $d=5$
$a+(n-1) d=995$
$\Rightarrow 105+(n-1) 5=995$
$\Rightarrow(n-1) 5=995-105=890$
$\Rightarrow n-1=178$
$\Rightarrow n=179$
$\therefore S_{n}=\frac{179}{2}[2(105)+(179-1)(5)]$
$=\frac{179}{2}[2(105)+(178)(5)]$
$=179[105+(89) 5]$
$=179(105+445)$
$=(179)(550)$
$=98450$
Thus, the sum of all natural numbers lying between 100 and $1000,$ which are multiples of $5,$ $98450$
Standard 11
Mathematics