Let the coefficients of the middle terms in the expansion of $\left(\frac{1}{\sqrt{6}}+\beta x\right)^{4},(1-3 \beta x)^{2}$ and $\left(1-\frac{\beta}{2} x\right)^{6}, \beta>0$, respectively form the first three terms of an $A.P.$ If $d$ is the common difference of this $A.P.$, then $50-\frac{2 d}{\beta^{2}}$ is equal to.

  • [JEE MAIN 2022]
  • A

    $57$

  • B

    $56$

  • C

    $55$

  • D

    $54$

Similar Questions

The sum of the series $\frac{1}{2} + \frac{1}{3} + \frac{1}{6} + ........$ to $9$ terms is

The sum of $n$ terms of two arithmetic progressions are in the ratio $(3 n+8):(7 n+15) .$ Find the ratio of their $12^{\text {th }}$ terms.

If the $10^{\text {th }}$ term of an A.P. is $\frac{1}{20}$ and its $20^{\text {th }}$ term is $\frac{1}{10},$ then the sum of its first $200$ terms is

  • [JEE MAIN 2020]

If  ${\log _5}2,\,{\log _5}({2^x} - 3)$ and  ${\log _5}(\frac{{17}}{2} + {2^{x - 1}})$ are in $A.P.$ then the value of $x$ is :-

The sequence $\frac{5}{{\sqrt 7 }}$, $\frac{6}{{\sqrt 7 }}$, $\sqrt 7 $, ....... is