यदि $\frac{1}{{p + q}},\;\frac{1}{{r + p}},\;\frac{1}{{q + r}}$ समान्तर श्रेणी में हैं, तो
$p,\;,q,\;r$ समान्तर श्रेणी में होंगे
${p^2},\;{q^2},\;{r^2}$ समान्तर श्रेणी में होंगे
$\frac{1}{p},\;\frac{1}{q},\;\frac{1}{r}$ समान्तर श्रेणी में होंगे
इनमें से कोई नहीं
किसी समांतर श्रेढ़ी में पदों की संख्या सम है। इसके विषम पदों का योग $24$ है तथा सम पदों का योग $30$ है। यदि अंतिम पद, प्रथम पद से $10 \frac{1}{2}$ अधिक है, तो समांतर श्रेढ़ी में पदों की संख्या है
यदि एक समान्तर श्रेढ़ी के प्रथम तीन पदों का योगफल तथा गुणनफल क्रमशः $33$ तथा $1155$ है, तो इसके $11$ वें पद का एक मान है
श्रेणियों $ S_1=3+7+11+15+19+\ldots \ldots $ $ S_2=1+6+11+16+21+\ldots $ का $8$ वाँ उभयनिष्ठ पद है।
$5$ और $26$ के बीच ऐसी $5$ संख्याएँ डालिए ताकि प्राप्त अनुक्रम समांतर श्रेणी बन जाए।
$1$ व $100$ के बीच के उन सभी पूर्णाकों का योगफल जो कि $3$ व $5$ से विभाजित न हों