Gujarati
8. Sequences and Series
hard

If $1,\;{\log _y}x,\;{\log _z}y,\; - 15{\log _x}z$ are in $A.P.$, then

A

${z^3} = x$

B

$x = {y^{ - 1}}$

C

${z^{ - 3}} = y$

D

All the above

Solution

(d) Let $d$ be the common difference

then ${\log _y}x = 1 + d$

$ \Rightarrow $$x = {y^{1 + d}}$

${\log _z}y = 1 + 2d$

$ \Rightarrow $$y = {z^{1 + 2d}}$

and $ – 15{\log _x}z = 1 + 3d$

$ \Rightarrow $$z = {x^{ – (1 + 3d)/15}}$

$\therefore $$x = {y^{1 + d}} = {z^{(1 + 2d)(1 + d)}} = {x^{ – (1 + d)(1 + 2d)(1 + 3d)/15}}$

$ \Rightarrow $$(1 + d)(1 + 2d)(1 + 3d) = – 15$

$ \Rightarrow $$6{d^3} + 11{d^2} + 6d + 16 = 0$

$ \Rightarrow $$(d + 2)(6{d^2} – d + 8) = 0$

$ \Rightarrow $$d = – 2$

[Note that $6{d^2} – d + 8 = 0$ has complex roots]

$\therefore $ $x = {y^{1 + d}} = {y^{ – 1}},\;y = {z^{1 – 4}} = {z^{ – 3}}$

$\therefore $$x = {({z^{ – 3}})^{ – 1}} = {z^3}$.

Also $x = {y^{ – 1}} = {z^3}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.