Between $1$ and $31, m$ numbers have been inserted in such a way that the resulting sequence is an $A. P.$ and the ratio of $7^{\text {th }}$ and $(m-1)^{\text {th }}$ numbers is $5: 9 .$ Find the value of $m$
Let $A_{1}, A_{2}, \ldots \ldots A_{m}$ be m numbers such that $1, A_{1}, A_{2}, \ldots \ldots A_{m}, 31$ is an $A.P.$
Here, $a=1, b=31, n=m+2$
$\therefore 31=1+(m+2-1)(d)$
$\Rightarrow 30=(m+1) d$
$\Rightarrow d=\frac{30}{m+1}$ ...........$(1)$
$A_{1}=a+d$
$A_{2}=a+2 d$
$A_{3}=a+3 d$
$\therefore A_{7}=a+7 d$
$A_{m-1}=a+(m-1) d$
According to the given condition,
$\frac{a+7 d}{a+(m-1) d}=\frac{5}{9}$
$\Rightarrow \frac{1+7\left(\frac{30}{(m+1)}\right)}{1+(m-1)\left(\frac{30}{m+1}\right)}=\frac{5}{9}$ [ From $(1)$ ]
$\Rightarrow \frac{m+1+7(30)}{m+1+30(m-1)}=\frac{5}{9}$
$\Rightarrow \frac{m+1+210}{m+1+30 m-30}=\frac{5}{9}$
$\Rightarrow \frac{m+211}{31 m-29}=\frac{5}{9}$
$\Rightarrow 9 m+1899=155 m-145$
$\Rightarrow 155 m-9 m=1899+145$
$\Rightarrow 146 m=2044$
$\Rightarrow m=14$
Thus, the value of $m$ is $14$
If $b + c,$ $c + a,$ $a + b$ are in $H.P.$, then $\frac{a}{{b + c}},\frac{b}{{c + a}},\frac{c}{{a + b}}$ are in
The ratio of the sums of $m$ and $n$ terms of an $A.P.$ is $m^{2}: n^{2} .$ Show that the ratio of $m^{ th }$ and $n^{ th }$ term is $(2 m-1):(2 n-1)$
If ${\log _5}2,\,{\log _5}({2^x} - 3)$ and ${\log _5}(\frac{{17}}{2} + {2^{x - 1}})$ are in $A.P.$ then the value of $x$ is :-
Let $a$, $b$ be two non-zero real numbers. If $p$ and $r$ are the roots of the equation $x ^{2}-8 ax +2 a =0$ and $q$ and $s$ are the roots of the equation $x^{2}+12 b x+6 b$ $=0$, such that $\frac{1}{ p }, \frac{1}{ q }, \frac{1}{ r }, \frac{1}{ s }$ are in A.P., then $a ^{-1}- b ^{-1}$ is equal to $......$
When $9^{th}$ term of $A.P$ is divided by its $2^{nd}$ term then quotient is $5$ and when $13^{th}$ term is divided by $6^{th}$ term then quotient is $2$ and Remainder is $5$ then find first term of $A.P.$