Between $1$ and $31, m$ numbers have been inserted in such a way that the resulting sequence is an $A. P.$ and the ratio of $7^{\text {th }}$ and $(m-1)^{\text {th }}$ numbers is $5: 9 .$ Find the value of $m$
Let $A_{1}, A_{2}, \ldots \ldots A_{m}$ be m numbers such that $1, A_{1}, A_{2}, \ldots \ldots A_{m}, 31$ is an $A.P.$
Here, $a=1, b=31, n=m+2$
$\therefore 31=1+(m+2-1)(d)$
$\Rightarrow 30=(m+1) d$
$\Rightarrow d=\frac{30}{m+1}$ ...........$(1)$
$A_{1}=a+d$
$A_{2}=a+2 d$
$A_{3}=a+3 d$
$\therefore A_{7}=a+7 d$
$A_{m-1}=a+(m-1) d$
According to the given condition,
$\frac{a+7 d}{a+(m-1) d}=\frac{5}{9}$
$\Rightarrow \frac{1+7\left(\frac{30}{(m+1)}\right)}{1+(m-1)\left(\frac{30}{m+1}\right)}=\frac{5}{9}$ [ From $(1)$ ]
$\Rightarrow \frac{m+1+7(30)}{m+1+30(m-1)}=\frac{5}{9}$
$\Rightarrow \frac{m+1+210}{m+1+30 m-30}=\frac{5}{9}$
$\Rightarrow \frac{m+211}{31 m-29}=\frac{5}{9}$
$\Rightarrow 9 m+1899=155 m-145$
$\Rightarrow 155 m-9 m=1899+145$
$\Rightarrow 146 m=2044$
$\Rightarrow m=14$
Thus, the value of $m$ is $14$
What is the $20^{\text {th }}$ term of the sequence defined by
$a_{n}=(n-1)(2-n)(3+n) ?$
Let ${T_r}$ be the ${r^{th}}$ term of an $A.P.$ for $r = 1,\;2,\;3,....$. If for some positive integers $m,\;n$ we have ${T_m} = \frac{1}{n}$ and ${T_n} = \frac{1}{m}$, then ${T_{mn}}$ equals
The sums of $n$ terms of three $A.P.'s$ whose first term is $1$ and common differences are $1, 2, 3$ are ${S_1},\;{S_2},\;{S_3}$ respectively. The true relation is
Write the first five terms of the sequences whose $n^{t h}$ term is $a_{n}=n \frac{n^{2}+5}{4}$
If the sum of $n$ terms of an $A.P.$ is $nA + {n^2}B$, where $A,B$ are constants, then its common difference will be