यदि $1,\;{\log _y}x,\;{\log _z}y,\; - 15{\log _x}z$ समान्तर श्रेणी में हों, तब
${z^3} = x$
$x = {y^{ - 1}}$
${z^{ - 3}} = y$
उपरोक्त सभी
माना $\mathrm{x}_1, \mathrm{x}_2 \ldots, \mathrm{x}_{100}$ एक समांतर श्रेणी में हैं, जिनका माध्य 200 है तथा $x_1=2$ है। यदि $y_i=i\left(x_i-i\right), 1 \leq i \leq 100$ हैं, तो $\mathrm{y}_1, \mathrm{y}_2, \ldots \ldots, \mathrm{y}_{100}$ का माध्य है
$1$ से $2001$ तक के विषम पूर्णांकों का योग ज्ञात कीजिए।
यदि एक समान्तर श्रेढ़ी के प्रथम तीन पदों का योगफल तथा गुणनफल क्रमशः $33$ तथा $1155$ है, तो इसके $11$ वें पद का एक मान है
माना ${S_n}$ एक समान्तर श्रेणी के $n$पदों का योग दर्शाता है। यदि ${S_{2n}} = 3{S_n}$, तो अनुपात $\frac{{{S_{3n}}}}{{{S_n}}} = $
एक समान्तर श्रेणी का छठवां पद $2$ के बराबर है, तब गुणनफल ${a_1}{a_4}{a_5}$ को न्यूनतम बनाने वाला समान्तर श्रेणी का सार्वअन्तर है