Write the first five terms of the sequences whose $n^{t h}$ term is $a_{n}=\frac{n}{n+1}$
$a_{n}=\frac{n}{n+1}$
Substituting $n=1,2,3,4,5,$ we obtain
${a_1} = \frac{1}{{1 + 1}} = \frac{1}{2},$
${a_2} = \frac{2}{{2 + 1}} = \frac{2}{3},$
${a_3} = \frac{3}{{3 + 1}} = \frac{3}{4},$
${a_4} = \frac{4}{{4 + 1}} = \frac{4}{5},$
${a_5} = \frac{5}{{5 + 1}} = \frac{5}{6}$
Therefore, the required terms are $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}$ and $\frac{5}{6}$
The sum of integers from $1$ to $100$ that are divisible by $2$ or $5$ is
If ${\log _3}2,\;{\log _3}({2^x} - 5)$ and ${\log _3}\left( {{2^x} - \frac{7}{2}} \right)$ are in $A.P.$, then $x$ is equal to
If the sides of a right angled traingle are in $A.P.$, then the sides are proportional to
If the numbers $a,\;b,\;c,\;d,\;e$ form an $A.P.$, then the value of $a - 4b + 6c - 4d + e$ is
The number of terms of the $A.P. 3,7,11,15...$ to be taken so that the sum is $406$ is