Write the first five terms of the sequences whose $n^{t h}$ term is $a_{n}=\frac{n}{n+1}$
$a_{n}=\frac{n}{n+1}$
Substituting $n=1,2,3,4,5,$ we obtain
${a_1} = \frac{1}{{1 + 1}} = \frac{1}{2},$
${a_2} = \frac{2}{{2 + 1}} = \frac{2}{3},$
${a_3} = \frac{3}{{3 + 1}} = \frac{3}{4},$
${a_4} = \frac{4}{{4 + 1}} = \frac{4}{5},$
${a_5} = \frac{5}{{5 + 1}} = \frac{5}{6}$
Therefore, the required terms are $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}$ and $\frac{5}{6}$
Let $A =\left\{1, a _{1}, a _{2} \ldots \ldots a _{18}, 77\right\}$ be a set of integers with $1< a _{1}< a _{2}<\ldots \ldots< a _{18}<77$. Let the set $A + A =\{ x + y : x , y \in A \} \quad$ contain exactly $39$ elements. Then, the value of $a_{1}+a_{2}+\ldots \ldots+a_{18}$ is equal to...........
If $f(x + y,x - y) = xy\,,$ then the arithmetic mean of $f(x,y)$ and $f(y,x)$ is
If $x,y,z$ are in $A.P. $ and ${\tan ^{ - 1}}x,{\tan ^{ - 1}}y$ and ${\tan ^{ - 1}}z$ are also in $A.P.$, then
Let $AP ( a ; d )$ denote the set of all the terms of an infinite arithmetic progression with first term a and common difference $d >0$. If $\operatorname{AP}(1 ; 3) \cap \operatorname{AP}(2 ; 5) \cap \operatorname{AP}(3 ; 7)=\operatorname{AP}( a ; d )$ then $a + d$ equals. . . . .
The number of terms in the series $101 + 99 + 97 + ..... + 47$ is