यदि गुणोत्तर श्रेणी के अनंत पदों का योगफल $s$ तथा प्रथम पद $a$ है, तो सार्वअनुपात $r$ होगा
$\frac{{a - s}}{s}$
$\frac{{s - a}}{s}$
$\frac{a}{{1 - s}}$
$\frac{{s - a}}{a}$
माना धनात्मक पदों की एक गुणोत्तर श्रेढ़ी का $n$ वां पद $a _{ n }$ है। यदि $\sum_{n=1}^{100} a_{2 n+1}=200$ तथा $\sum_{n=1}^{100} a_{2 n}=100$, तो $\sum_{ n =1}^{200} a _{ n }$ बराबर है
गुणोत्तर श्रेणी के तीन क्रमागत पदों का योग $38$ तथा उनका गुणनफल $1728$ है, तब श्रेणी का महत्तम पद होगा
संख्याओं $3,\,{3^2},\,{3^3},....,\,{3^n}$ का गुणोत्तर माध्य होगा
यदि गुणोत्तर श्रेणी ${a_1},\;{a_2},\;{a_3},..........$ का प्रथम पद इकाई इस प्रकार है कि $4{a_2} + 5{a_3}$ न्यूनतम है, तब गुणोत्तर श्रेणी का सार्व-अनुपात है
एक अनंन्त $GPa , ar , a r ^{2}, a r ^{3}, \ldots$ का योग 15 है तथा इसके प्रत्येक पद का वर्ग करने का योग 150 है, तो $a r^{2}, a r^{4}, a r^{6}, \ldots$ का योग है।