उस अनन्त गुणोत्तर श्रेणी का, जिसका सार्वअनुपात $r$ हो, योग ज्ञात किया जा सकता है
$r$ के सभी मानों के लिए
$r$के केवल धनात्मक मानों के लिए
केवल $0 < r < 1$के लिए
केवल $ - 1 < r < 1,\,\,(r \ne 0)$ के लिये
यदि $\frac{6}{3^{12}}+\frac{10}{3^{11}}+\frac{20}{3^{10}}+\frac{40}{3^9}+\ldots . .+\frac{10240}{3}=2^{ n } \cdot m$ है, जहाँ $m$ एक विषम संख्या है, तो $m . n$ बराबर है $...............$
यदि किसी गुणोत्तर श्रेणी का $(p + q)$ वाँ पद $m$ है और $(p - q)$ वाँ पद $n$ है, तो श्रेणी का $p$ वाँ पद होगा
यदि $a,\;b,\;c$ गुणोत्तर श्रेणी में हों, तो
यदि किसी गुणोत्तर श्रेणी के प्रथम $6$ पदों का योग, प्रथम $3$ पदों के योग का $9$ गुना हो, तो श्रेणी का सार्वअनुपात होगा