यदि ${a^2} + a{b^2} + 16{c^2} = 2(3ab + 6bc + 4ac)$,जहाँ $a,b,c$ अशून्य संख्यायें हैं, तब $a,b,c$ होंगे
समान्तर श्रेणी में
गुणोत्तर श्रेणी में
हरात्मक श्रेणी में
इनमें से कोई नहीं
माना $\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3, \ldots$. वर्धमान धनात्मक संख्याओं की एक $GP$ है। यदि चौथे व छटवें पदों का गुणनफल 9 है और पाँचवे व सातवें पदों का योग 24 है, तब $\mathrm{a}_1 \mathrm{a}_9+\mathrm{a}_2 \mathrm{a}_4 \mathrm{a}_9+\mathrm{a}_5+\mathrm{a}_7$ बराबर है___________________.
एक समान्तर श्रेणी, गुणोत्तर श्रेणी तथा हरात्मक श्रेणी समान प्रथम तथा अन्तिम पद रखते हैं। तीनों श्रेणियों में पदों की संख्या विषम है, तब तीनों श्रेणियों के मध्य पद होंगे
यदि $a,\;b,\;c,\;d$ भिन्न वास्तविक संख्यायें ऐसी हों कि $({a^2} + {b^2} + {c^2}){p^2} - 2(ab + bc + cd)p + ({b^2} + {c^2} + {d^2}) \le 0$ हो, तब $a,\;b,\;c,\;d$ होंगे
यदि किसी गुणोत्तर श्रेणी के प्रथम $3$ पदों का योग तथा प्रथम $6$ पदों के योग का अनुपात $125 : 152$ हो, तो सार्वनिष्पत्ति है
अनन्त गुणोत्तर श्रेणी का प्रथम पद $x$ और उसका योग $5$ है, तब