यदि $\frac{1}{{b - c}},\;\frac{1}{{c - a}},\;\frac{1}{{a - b}}$ समान्तर श्रेणी के क्रमागत पद हों, तो ${(b - c)^2},\;{(c - a)^2},\;{(a - b)^2}$ होंगे
गुणोत्तर श्रेणी में
समान्तर श्रेणी में
हरात्मक श्रेणी में
इनमें से कोई नहीं
यदि किसी समांतर श्रेणी के $n$ पदों का योग $n P +\frac{1}{2} n(n-1) Q$, है, जहाँ $P$ तथा $Q$ अचर हो तो सार्व अंतर ज्ञात कीजिए।
किसी समान्तर श्रेणी का $7$ वाँ पद $40$ है, तो श्रेणी के प्रथम $13$ पदों का योग होगा
किसी समूह की $50$ सँख्याओं का समान्तर माध्य $38$ है। यदि समूह की दो संख्यायें $55$ तथा $45$ हटा दी जायें, तब शेष संख्याओं के समूह का समान्तर माध्य है
एक समान्तर श्रेणी का छठवां पद $2$ के बराबर है, तब गुणनफल ${a_1}{a_4}{a_5}$ को न्यूनतम बनाने वाला समान्तर श्रेणी का सार्वअन्तर है
यदि एक वास्तविक संख्या $x$ के लिए $1$ , $\log _{10}(4 x-2)$ तथा $\log _{10}\left(4^{x}+\frac{18}{5}\right)$ एक समान्तर श्रेढ़ी में है, तो सारणिक $\left|\begin{array}{ccc}2\left( x -\frac{1}{2}\right) & x -1 & x ^{2} \\ 1 & 0 & x \\ x & 1 & 0\end{array}\right|$ का मान बराबर है......।