If $b + c,$ $c + a,$ $a + b$ are in $H.P.$, then $\frac{a}{{b + c}},\frac{b}{{c + a}},\frac{c}{{a + b}}$ are in

  • A

    $A.P.$

  • B

    $G.P.$

  • C

    $H.P.$

  • D

    None of these

Similar Questions

If the ${9^{th}}$ term of an $A.P.$ is $35$ and ${19^{th}}$ is $75$, then its ${20^{th}}$ terms will be

Let ${S_1},{S_2},......,{S_{101}}$ be the consecutive terms of an $A.P$ . If $\frac{1}{{{S_1}{S_2}}} + \frac{1}{{{S_2}{S_3}}} + .... + \frac{1}{{{S_{100}}{S_{101}}}} = \frac{1}{6}$ and ${S_1} + {S_{101}} = 50$ , then $\left| {{S_1} - {S_{101}}} \right|$ is equal to

Given an $A.P.$ whose terms are all positive integers. The sum of its first nine terms is greater than $200$ and less than $220$. If the second term in it is $12$, then its $4^{th}$ term is

  • [JEE MAIN 2014]

If ${S_1},\;{S_2},\;{S_3},...........{S_m}$ are the sums of $n$ terms of $m$ $A.P.'s$ whose first terms are $1,\;2,\;3,\;...............,m$ and common differences are $1,\;3,\;5,\;...........2m - 1$ respectively, then ${S_1} + {S_2} + {S_3} + .......{S_m} = $

Find the sum to $n$ terms of the $A.P.,$ whose $k^{\text {th }}$ term is $5 k+1$