If $b + c,$ $c + a,$ $a + b$ are in $H.P.$, then $\frac{a}{{b + c}},\frac{b}{{c + a}},\frac{c}{{a + b}}$ are in
$A.P.$
$G.P.$
$H.P.$
None of these
If $2x,\;x + 8,\;3x + 1$ are in $A.P.$, then the value of $x$ will be
Find the $7^{\text {th }}$ term in the following sequence whose $n^{\text {th }}$ term is $a_{n}=\frac{n^{2}}{2^{n}}$
In an $A.P.,$ if $p^{\text {th }}$ term is $\frac{1}{q}$ and $q^{\text {th }}$ term is $\frac{1}{p},$ prove that the sum of first $p q$ terms is $\frac{1}{2}(p q+1),$ where $p \neq q$
Let $A =\left\{1, a _{1}, a _{2} \ldots \ldots a _{18}, 77\right\}$ be a set of integers with $1< a _{1}< a _{2}<\ldots \ldots< a _{18}<77$. Let the set $A + A =\{ x + y : x , y \in A \} \quad$ contain exactly $39$ elements. Then, the value of $a_{1}+a_{2}+\ldots \ldots+a_{18}$ is equal to...........
The sum of all those terms, of the anithmetic progression $3,8,13, \ldots \ldots .373$, which are not divisible by $3$,is equal to $.......$.