If $a,b,c$ are in $A.P.$, then $\frac{1}{{\sqrt a + \sqrt b }},\,\frac{1}{{\sqrt a + \sqrt c }},$ $\frac{1}{{\sqrt b + \sqrt c }}$ are in
$A.P.$
$G.P.$
$H.P.$
None of these
Let $S_n$ denote the sum of first $n$ terms an arithmetic progression. If $S_{20}=790$ and $S_{10}=145$, then $S_{15}-$ $S_5$ is:
If three positive numbers $a, b$ and $c$ are in $A.P.$ such that $abc\, = 8$, then the minimum possible value of $b$ is
If ${\log _5}2,\,{\log _5}({2^x} - 3)$ and ${\log _5}(\frac{{17}}{2} + {2^{x - 1}})$ are in $A.P.$ then the value of $x$ is :-
The sum of the first four terms of an $A.P.$ is $56 .$ The sum of the last four terms is $112.$ If its first term is $11,$ then find the number of terms.
The sum of $24$ terms of the following series $\sqrt 2 + \sqrt 8 + \sqrt {18} + \sqrt {32} + .........$ is