8. Sequences and Series
hard

The sum of all the elements of the set $\{\alpha \in\{1,2, \ldots, 100\}: \operatorname{HCF}(\alpha, 24)=1\}$ is

A

$1485$

B

$1633$

C

$1857$

D

$1578$

(JEE MAIN-2022)

Solution

$\operatorname{HCF}(\alpha, 24)=1$

Now, $24=2^{2} \cdot 3$

$\rightarrow \alpha$ is not the multiple of $2$ or $3$

Sum of values of $\alpha$

$= S ( U )-\{ S$ (multiple of $2$)$+ S$ (multiple of$3$ )

– $S$ (multiple of $6$)

$=(1+2+3+\ldots . .100)-(2+4+6 \ldots .+100)-(3$

$+6+\ldots . .99)+(6+12+\ldots .+96)$

$=\frac{100 \times 101}{2}-50 \times 51-\frac{33}{2} \times(3+99)+\frac{16}{2}(6+96)$

$=5050-2550-1683+816=1633$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.