- Home
- Standard 11
- Mathematics
8. Sequences and Series
hard
The sum of all the elements of the set $\{\alpha \in\{1,2, \ldots, 100\}: \operatorname{HCF}(\alpha, 24)=1\}$ is
A
$1485$
B
$1633$
C
$1857$
D
$1578$
(JEE MAIN-2022)
Solution
$\operatorname{HCF}(\alpha, 24)=1$
Now, $24=2^{2} \cdot 3$
$\rightarrow \alpha$ is not the multiple of $2$ or $3$
Sum of values of $\alpha$
$= S ( U )-\{ S$ (multiple of $2$)$+ S$ (multiple of$3$ )
– $S$ (multiple of $6$)
$=(1+2+3+\ldots . .100)-(2+4+6 \ldots .+100)-(3$
$+6+\ldots . .99)+(6+12+\ldots .+96)$
$=\frac{100 \times 101}{2}-50 \times 51-\frac{33}{2} \times(3+99)+\frac{16}{2}(6+96)$
$=5050-2550-1683+816=1633$
Standard 11
Mathematics