If $p,\;q,\;r$ are in $A.P.$ and are positive, the roots of the quadratic equation $p{x^2} + qx + r = 0$ are all real for

  • [IIT 1995]
  • A

    $\left| {\,\frac{r}{p} - 7\;} \right|\; \ge 4\sqrt 3 $

  • B

    $\left| {\;\frac{p}{r} - 7\;} \right|\; < 4\sqrt 3 $

  • C

    All $p$ and $r$

  • D

    No $p$ and $r$

Similar Questions

Let $S_{n}$ be the sum of the first $n$ terms of an arithmetic progression. If $S_{3 n}=3 S_{2 n}$, then the value of $\frac{S_{4 n}}{S_{2 n}}$ is:

  • [JEE MAIN 2021]

In $\Delta ABC$, if $a, b, c$ are in $A.P.$ (with usual notations), identify the incorrect statements -

Let $\alpha, \beta$ and $\gamma$ be three positive real numbers. Let $f ( x )=\alpha x ^{5}+\beta x ^{3}+\gamma x , x \in R \quad$ and $\quad g : R \rightarrow R$ be such that $g(f(x))=x$ for all $x \in R$. If $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ be in arithmetic progression with mean zero, then the value of $f\left(g\left(\frac{1}{n} \sum_{i=1}^{n} f\left(a_{i}\right)\right)\right)$ is equal to.

  • [JEE MAIN 2022]

If all interior angle of quadrilateral are in $AP$ . If common difference is $10^o$ , then find smallest angle ?.....$^o$

The sum of integers from $1$ to $100$ that are divisible by $2$ or $5$ is

  • [IIT 1984]