8. Sequences and Series
hard

If $p,\;q,\;r$ are in $A.P.$ and are positive, the roots of the quadratic equation $p{x^2} + qx + r = 0$ are all real for

A

$\left| {\,\frac{r}{p} - 7\;} \right|\; \ge 4\sqrt 3 $

B

$\left| {\;\frac{p}{r} - 7\;} \right|\; < 4\sqrt 3 $

C

All $p$ and $r$

D

No $p$ and $r$

(IIT-1995)

Solution

(a) $p,\;q,\;r$ are positive and are in $A.P.$

$\therefore \;q = \frac{{p + r}}{2}$ ……(i)

The roots of $p{x^2} + qx + r = 0$ are real

$ \Rightarrow $ ${q^2} \ge 4pr$

$ \Rightarrow $${\left[ {\frac{{p + r}}{2}} \right]^2} \ge 4pr$ [using (i)]

$ \Rightarrow $ ${p^2} + {r^2} – 14pr \ge 0$

$ \Rightarrow $ ${\left( {\frac{r}{p}} \right)^2} – 14\left( {\frac{r}{p}} \right) + 1 \ge 0$

$(\because \;p > 0\;{\text{and}}\;p \ne 0)$

$ \Rightarrow $ ${\left( {\frac{r}{p} – 7} \right)^2} – 48 \ge 0$ 

$ \Rightarrow $${\left( {\frac{r}{p} – 7} \right)^2} – {(4\sqrt 3 )^2} \ge 0$

$ \Rightarrow $ $\left| {\;\frac{r}{p} – 7\;} \right|\; \ge 4\sqrt 3 $.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.