Write the first five terms of the sequences whose $n^{t h}$ term is $a_{n}=(-1)^{n-1} 5^{n+1}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Substituting $n=1,2,3,4,5,$ we obtain

$a_{1}=(-1)^{1-1} 5^{1+1}=5^{2}=25$

$a_{2}=(-1)^{2-1} 5^{2+1}=-5^{3}=-125$

$a_{3}=(-1)^{3-1} 5^{3+1}=5^{4}=625$

$a_{4}=(-1)^{4-1} 5^{4+1}=-5^{5}=-3125$

$a^{5}=(-1)^{5-1} 5^{5+1}=5^{6}=15625$

Therefore, the required terms are $25,-125,625,-3125$ and $15625 .$

Similar Questions

If $a,\;b,\;c,\;d,\;e,\;f$ are in $A.P.$, then the value of $e - c$ will be

If $3^{2 \sin 2 \alpha-1},14$ and $3^{4-2 \sin 2 \alpha}$ are the first three terms of an $A.P.$ for some $\alpha$, then the sixth term of this $A.P.$ is 

  • [JEE MAIN 2020]

The sums of $n$ terms of three $A.P.'s$ whose first term is $1$ and common differences are $1, 2, 3$ are ${S_1},\;{S_2},\;{S_3}$ respectively. The true relation is

If the sum of the $10$ terms of an $A.P.$ is $4$ times to the sum of its $5$ terms, then the ratio of first term and common difference is

Let $S_{n}$ denote the sum of first $n$-terms of an arithmetic progression. If $S_{10}=530, S_{5}=140$, then $\mathrm{S}_{20}-\mathrm{S}_{6}$ is equal to :

  • [JEE MAIN 2021]