Write the first five terms of the sequences whose $n^{t h}$ term is $a_{n}=(-1)^{n-1} 5^{n+1}$
Substituting $n=1,2,3,4,5,$ we obtain
$a_{1}=(-1)^{1-1} 5^{1+1}=5^{2}=25$
$a_{2}=(-1)^{2-1} 5^{2+1}=-5^{3}=-125$
$a_{3}=(-1)^{3-1} 5^{3+1}=5^{4}=625$
$a_{4}=(-1)^{4-1} 5^{4+1}=-5^{5}=-3125$
$a^{5}=(-1)^{5-1} 5^{5+1}=5^{6}=15625$
Therefore, the required terms are $25,-125,625,-3125$ and $15625 .$
Write the first three terms in each of the following sequences defined by the following:
$a_{n}=\frac{n-3}{4}$
Let $\frac{1}{{{x_1}}},\frac{1}{{{x_2}}},\frac{1}{{{x_3}}},.....,$ $({x_i} \ne \,0\,for\,\,i\, = 1,2,....,n)$ be in $A.P.$ such that $x_1 = 4$ and $x_{21} = 20.$ If $n$ is the least positive integer for which $x_n > 50,$ then $\sum\limits_{i = 1}^n {\left( {\frac{1}{{{x_i}}}} \right)} $ is equal to.
If $b + c,$ $c + a,$ $a + b$ are in $H.P.$, then $\frac{a}{{b + c}},\frac{b}{{c + a}},\frac{c}{{a + b}}$ are in
Find the $9^{\text {th }}$ term in the following sequence whose $n^{\text {th }}$ term is $a_{n}=(-1)^{n-1} n^{3}$
If three positive numbers $a, b$ and $c$ are in $A.P.$ such that $abc\, = 8$, then the minimum possible value of $b$ is