Write the first five terms of the sequences whose $n^{t h}$ term is $a_{n}=(-1)^{n-1} 5^{n+1}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Substituting $n=1,2,3,4,5,$ we obtain

$a_{1}=(-1)^{1-1} 5^{1+1}=5^{2}=25$

$a_{2}=(-1)^{2-1} 5^{2+1}=-5^{3}=-125$

$a_{3}=(-1)^{3-1} 5^{3+1}=5^{4}=625$

$a_{4}=(-1)^{4-1} 5^{4+1}=-5^{5}=-3125$

$a^{5}=(-1)^{5-1} 5^{5+1}=5^{6}=15625$

Therefore, the required terms are $25,-125,625,-3125$ and $15625 .$

Similar Questions

Write the first three terms in each of the following sequences defined by the following:

$a_{n}=\frac{n-3}{4}$

Let $\frac{1}{{{x_1}}},\frac{1}{{{x_2}}},\frac{1}{{{x_3}}},.....,$  $({x_i} \ne \,0\,for\,\,i\, = 1,2,....,n)$  be in $A.P.$  such that  $x_1 = 4$ and $x_{21} = 20.$ If $n$  is the least positive integer for which $x_n > 50,$  then $\sum\limits_{i = 1}^n {\left( {\frac{1}{{{x_i}}}} \right)} $  is equal to.

  • [JEE MAIN 2018]

If $b + c,$ $c + a,$ $a + b$ are in $H.P.$, then $\frac{a}{{b + c}},\frac{b}{{c + a}},\frac{c}{{a + b}}$ are in

Find the $9^{\text {th }}$ term in the following sequence whose $n^{\text {th }}$ term is $a_{n}=(-1)^{n-1} n^{3}$

If three positive numbers $a, b$ and $c$ are in $A.P.$ such that $abc\, = 8$, then the minimum possible value of $b$ is

  • [JEE MAIN 2017]