Write the first five terms of the sequences whose $n^{t h}$ term is $a_{n}=(-1)^{n-1} 5^{n+1}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Substituting $n=1,2,3,4,5,$ we obtain

$a_{1}=(-1)^{1-1} 5^{1+1}=5^{2}=25$

$a_{2}=(-1)^{2-1} 5^{2+1}=-5^{3}=-125$

$a_{3}=(-1)^{3-1} 5^{3+1}=5^{4}=625$

$a_{4}=(-1)^{4-1} 5^{4+1}=-5^{5}=-3125$

$a^{5}=(-1)^{5-1} 5^{5+1}=5^{6}=15625$

Therefore, the required terms are $25,-125,625,-3125$ and $15625 .$

Similar Questions

If the sum of the series $2 + 5 + 8 + 11............$ is $60100$, then the number of terms are

The sum of the integers from $1$ to $100$ which are not divisible by $3$ or $5$ is

The number of terms common between the two series $2 + 5 + 8 +.....$ upto $50$ terms and the series $3 + 5 + 7 + 9.....$ upto $60$ terms, is

If $x,y,z$  are in $A.P.$ and  ${\tan ^{ - 1}}x,{\tan ^{ - 1}}y$ and ${\tan ^{ - 1}}z$ are also in other $A.P.$ then  . . . 

  • [JEE MAIN 2013]

If $x=\sum \limits_{n=0}^{\infty} a^{n}, y=\sum\limits_{n=0}^{\infty} b^{n}, z=\sum\limits_{n=0}^{\infty} c^{n}$, where $a , b , c$ are in $A.P.$ and $|a| < 1,|b| < 1,|c| < 1$, $abc \neq 0$, then

  • [JEE MAIN 2022]