If sum of $n$ terms of an $A.P.$ is $3{n^2} + 5n$ and ${T_m} = 164$ then $m = $
$26$
$27$
$28$
None of these
Show that the sum of $(m+n)^{ th }$ and $(m-n)^{ th }$ terms of an $A.P.$ is equal to twice the $m^{\text {th }}$ term.
If the $A.M.$ between $p^{th}$ and $q^{th}$ terms of an $A.P.$ is equal to the $A.M.$ between $r^{th}$ and $s^{th}$ terms of the same $A.P.$, then $p + q$ is equal to
If $x,y,z$ are in $A.P. $ and ${\tan ^{ - 1}}x,{\tan ^{ - 1}}y$ and ${\tan ^{ - 1}}z$ are also in $A.P.$, then
Let $a_1, a_2 , a_3,.....$ be an $A.P$, such that $\frac{{{a_1} + {a_2} + .... + {a_p}}}{{{a_1} + {a_2} + {a_3} + ..... + {a_q}}} = \frac{{{p^3}}}{{{q^3}}};p \ne q$. Then $\frac{{{a_6}}}{{{a_{21}}}}$ is equal to