Find the sum to $n$ terms of the $A.P.,$ whose $k^{\text {th }}$ term is $5 k+1$
It is given that the $k^{\text {th }}$ term of the $A.P.$ is $5 k+1$
$k^{\text {th }}$ term $=a_{k}+(k-1) d$
$\therefore a+(k-1) d=5 k+1$
$a+k d-d=5 k+1$
$\therefore$ Comparing the coefficient of $k ,$ we obtain $d=5$
$\Rightarrow a-d=1$
$\Rightarrow a-5=1$
$\Rightarrow a=6$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$=\frac{n}{2}[2(6)+(n-1)(5)]$
$=\frac{n}{2}[12+5 n-5]$
$=\frac{n}{2}[5 n+7]$
If $\frac{1}{{p + q}},\;\frac{1}{{r + p}},\;\frac{1}{{q + r}}$ are in $A.P.$, then
In an $\mathrm{A.P.}$ if $m^{\text {th }}$ term is $n$ and the $n^{\text {th }}$ term is $m,$ where $m \neq n$, find the ${p^{th}}$ term.
If the $10^{\text {th }}$ term of an A.P. is $\frac{1}{20}$ and its $20^{\text {th }}$ term is $\frac{1}{10},$ then the sum of its first $200$ terms is
Let $a$, $b$ be two non-zero real numbers. If $p$ and $r$ are the roots of the equation $x ^{2}-8 ax +2 a =0$ and $q$ and $s$ are the roots of the equation $x^{2}+12 b x+6 b$ $=0$, such that $\frac{1}{ p }, \frac{1}{ q }, \frac{1}{ r }, \frac{1}{ s }$ are in A.P., then $a ^{-1}- b ^{-1}$ is equal to $......$