Find the sum to $n$ terms of the $A.P.,$ whose $k^{\text {th }}$ term is $5 k+1$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that the $k^{\text {th }}$ term of the $A.P.$ is $5 k+1$

$k^{\text {th }}$ term $=a_{k}+(k-1) d$

$\therefore a+(k-1) d=5 k+1$

$a+k d-d=5 k+1$

$\therefore$ Comparing the coefficient of $k ,$ we obtain $d=5$

$\Rightarrow a-d=1$

$\Rightarrow a-5=1$

$\Rightarrow a=6$

$S_{n}=\frac{n}{2}[2 a+(n-1) d]$

$=\frac{n}{2}[2(6)+(n-1)(5)]$

$=\frac{n}{2}[12+5 n-5]$

$=\frac{n}{2}[5 n+7]$

Similar Questions

Find the sum of integers from $1$ to $100$ that are divisible by $2$ or $5.$

Let the sum of the first $n$ terms of a non-constant $A.P., a_1, a_2, a_3, ……$ be $50\,n\, + \,\frac{{n\,(n\, - 7)}}{2}A,$ where $A$ is a constant. If $d$ is the common difference of this $A.P.,$ then the ordered pair $(d,a_{50})$ is equal to

  • [JEE MAIN 2019]

The first term of an $A.P.$ of consecutive integers is ${p^2} + 1$ The sum of $(2p + 1)$ terms of this series can be expressed as

Let the sequence ${a_1},{a_2},{a_3},.............{a_{2n}}$ form an $A.P. $ Then $a_1^2 - a_2^2 + a_3^3 - ......... + a_{2n - 1}^2 - a_{2n}^2 = $

If ${a^2},\;{b^2},\;{c^2}$ are in $A.P.$, then ${(b + c)^{ - 1}},\;{(c + a)^{ - 1}}$ and ${(a + b)^{ - 1}}$ will be in