यदि ${a_1},\;{a_2},\,{a_3},......{a_{24}}$ समान्तर श्रेणी में हैं तथा ${a_1} + {a_5} + {a_{10}} + {a_{15}} + {a_{20}} + {a_{24}} = 225$, तो ${a_1} + {a_2} + {a_3} + ........ + {a_{23}} + {a_{24}} = $
$909$
$75$
$750$
$900$
अनुक्रम में प्रत्येक के प्रथम पाँच पद लिखिये, जिनका $n$ वाँ पद दिया गया है
$a_{n}=n(n+2)$
यदि $1,\;{\log _y}x,\;{\log _z}y,\; - 15{\log _x}z$ समान्तर श्रेणी में हों, तब
यदि किसी समांतर श्रेणी के $n$ वें पद का योगफल $3 n^{2}+5 n$ हैं तथा इसका $m$ वाँ पद $164$ है, तो $m$ का मान ज्ञात कीजिए।
यदि ${a_1},\,{a_2},....,{a_{n + 1}}$ समांतर श्रेणी में हों, तो $\frac{1}{{{a_1}{a_2}}} + \frac{1}{{{a_2}{a_3}}} + ..... + \frac{1}{{{a_n}{a_{n + 1}}}}$ का मान होगा
श्रेणी $a,a + nd,\,\,a + 2nd$ का माध्य होगा