यदि $x,\;y \in N$ के सभी मानों के लिये $f(x + y) = f(x)f(y)$ को सन्तुष्ट करने वाला एक फलन $f(x)$ इस प्रकार है कि $f(1) = 3$ तथा $\sum\limits_{x = 1}^n {f(x) = 120} $, तब $n$ का मान है

  • [IIT 1992]
  • A

    $4$

  • B

    $5$

  • C

    $6$

  • D

    इनमें से कोई नहीं

Similar Questions

माना $a, b, c \in R$ यदि $f(x)=a x^{2}+b x+c$ ऐसा है कि $a+b+c=3$ है तथा सभी $x, y \in R$ के लिए
$f(x+y)=f(x)+f(y)+x y$ है, तो $\sum_{n=1}^{10} f(n)$ बराबर है:

  • [JEE MAIN 2017]

माना $S =\{1,2,3,4\}$ है। तब समुच्चय \{f: $S \times S \rightarrow S : f$ आच्छादक तथा $f ( a , b )= f ( b , a \geq a \forall( a , b ) \in S \times S \}$ में अवयवों की संख्या है

  • [JEE MAIN 2022]

निम्न में से कौनसा फलन सम फलन है

माना $f(x)$ एक द्विघाती बहुपद है जिसका मुख्य-गुणांक 1 है तथा $f (0)= p , p \neq 0$ और $f (1)=\frac{1}{3}$ हैं। यदि समीकरणों $f ( x )=0$ तथा $fofofof (x)=0$ का एक उभयनिष्ठ वास्तविक मूल है, तो $f(-3)$ बराबर है

  • [JEE MAIN 2022]

यदि $f(x) = \frac{x}{{x - 1}} = \frac{1}{y}$, तो $f(y) = $