Gujarati
8. Sequences and Series
normal

यदि दो संख्याएँ $a$ और $b$के बीच $n$ गुणोत्तर माध्य ${G_1},\;{G_2},\;.....$${G_n}$ तथा एक माध्य $G$ हो, तो सत्य सम्बन्ध है

A

${G_1}.{G_2}........{G_n} = G$

B

${G_1}.{G_2}........{G_n} = {G^{1/n}}$

C

${G_1}.{G_2}........{G_n} = {G^n}$

D

${G_1}.{G_2}........{G_n} = {G^{2/n}}$

Solution

(c) यहाँ $G = {(ab)^{1/2}}$ एवं

${G_1} = a{r^1},\;{G_2} = a{r^2},……..,{G_n} = a{r^n}$

अत: ${G_1}.\;{G_2}.\;{G_3}…..{G_n} = {a^n}{r^{1 + 2 + … + n}} = {a^n}{r^{n(n + 1)/2}}$

परन्तु $a{r^{n + 1}} = b$

$\Rightarrow r = {\left( {\frac{b}{a}} \right)^{1/(n + 1)}}$

अत: अभीष्ट गुणनफल

= ${a^n}{\left( {\frac{b}{a}} \right)^{1/(n + 1)\;.\;n(n + 1)/2}} $

$= {(ab)^{n/2}} = {\{ {(ab)^{1/2}}\} ^n} = {G^n}$.

नोट : यह एक तथ्य है।

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.