यदि दो संख्याएँ $a$ और $b$के बीच $n$ गुणोत्तर माध्य ${G_1},\;{G_2},\;.....$${G_n}$ तथा एक माध्य $G$ हो, तो सत्य सम्बन्ध है
${G_1}.{G_2}........{G_n} = G$
${G_1}.{G_2}........{G_n} = {G^{1/n}}$
${G_1}.{G_2}........{G_n} = {G^n}$
${G_1}.{G_2}........{G_n} = {G^{2/n}}$
यदि किसी समान्तर श्रेणी के $p$ वें, $q$ वें, $r$ वें और $s$ वें पद गुणोत्तर श्रेणी में हैं, तो $(p - q),\;(q - r),\;(r - s)$ होंगे
यदि $a,\;b,\;c$ गुणोत्तर श्रेणी में हों, तो
माना $a_{1}, a_{2}, a_{3}, \ldots$ गुणोत्तर श्रेणी इस प्रकार है कि $a_{1}<0, a_{1}+a_{2}=4$ तथा $a_{3}+a_{4}=16$. यदि $\sum_{i=1}^{9} a_{i}=4 \lambda$ है, तो $\lambda$ बराबर है
$x$ के किस मान के लिए संख्याएँ $-\frac{2}{7}, x, \frac{-7}{2}$ गुणोत्तर श्रेणी में हैं ?
किसी गुणोत्तर श्रेणी के प्रथम तीन पदों का योगफल $16$ है तथा अगले तीन पदों का योग $128$ है तो गुणोत्तर श्रेणी का प्रथम पद, सार्व अनुपात तथा $n$ पदों का योगफल ज्ञात कीजिए।