Two distinct polynomials $f(x)$ and $g(x)$ are defined as follows:
$f(x)=x^2+a x+2 ; g(x)=x^2+2 x+a$.If the equations $f(x)=0$ and $g(x)=0$ have a common root, then the sum of the roots of the equation $f(x)+g(x)=0$ is
$-\frac{1}{2}$
$0$
$\frac{1}{2}$
$1$
The real roots of the equation ${x^2} + 5|x| + \,\,4 = 0$ are
Let $\alpha, \beta$ be roots of $x^2+\sqrt{2} x-8=0$. If $\mathrm{U}_{\mathrm{n}}=\alpha^{\mathrm{n}}+\beta^{\mathrm{n}}$, then $\frac{\mathrm{U}_{10}+\sqrt{2} \mathrm{U}_9}{2 \mathrm{U}_8}$ is equal to ............
If $\log _{(3 x-1)}(x-2)=\log _{\left(9 x^2-6 x+1\right)}\left(2 x^2-10 x-2\right)$, then $x$ equals
The complete solution of the inequation ${x^2} - 4x < 12\,{\rm{ is}}$
The number of roots of the equation $|x{|^2} - 7|x| + 12 = 0$ is