- Home
- Standard 11
- Mathematics
Two distinct polynomials $f(x)$ and $g(x)$ are defined as follows:
$f(x)=x^2+a x+2 ; g(x)=x^2+2 x+a$.If the equations $f(x)=0$ and $g(x)=0$ have a common root, then the sum of the roots of the equation $f(x)+g(x)=0$ is
$-\frac{1}{2}$
$0$
$\frac{1}{2}$
$1$
Solution
(c)
We have,
$f(x)=x^2+a x+2$ and $g(x)=x^2+2 x+a$
Let $\alpha$ be the common root of $f(x)=0$ and $g(x)=0$.
$\frac{\alpha^2}{a^2-4}=\frac{\alpha}{2-a}$
$\Rightarrow \alpha=\begin{array}{c}a^2-4 \\ 2-a\end{array}=\frac{(a+2)(a-2)}{-(a-2)}=-(a+2)$
and $\quad \frac{\alpha}{2-a}=\frac{1}{2-a} \Rightarrow \alpha=1$
$\therefore \quad-(a+2)=1$
$a+2=-1 \Rightarrow a=-3$
Now $\quad f(x)+g(x)=0$
$\therefore x^2-3 x+2+x^2+2 x-3=0$
$2 x^2-x-1=0$
Sum of roots $=\frac{1}{2} \quad\left[\because \alpha+\beta=\frac{-b}{a}\right]$