Let $f(x)={{x}^{2}}-x+k-2,k\in R$ then the complete set of values of $k$ for which $y=\left| f\left( \left| x \right| \right) \right|$ is non-derivable at $5$ distinict points is
$(1,4)$
$\left( 0,\frac{9}{4} \right)$
$\left( -\infty ,2 \right)$
$\left( 2,\frac{9}{4} \right)$
If for a posiive integer $n$ , the quadratic equation, $x\left( {x + 1} \right) + \left( {x + 1} \right)\left( {x + 2} \right) + .\;.\;.\; + \left( {x + \overline {n - 1} } \right)\left( {x + n} \right) = 10n$ has two consecutive integral solutions, then $n$ is equal to:
If $x$ is real , the maximum value of $\frac{{3{x^2} + 9x + 17}}{{3{x^2} + 9x + 7}}$ is
The sum of all non-integer roots of the equation $x^5-6 x^4+11 x^3-5 x^2-3 x+2=0$ is
The sum of the roots of the equation $x+1-2 \log _{2}\left(3+2^{x}\right)+2 \log _{4}\left(10-2^{-x}\right)=0$, is :