Let $f(x)={{x}^{2}}-x+k-2,k\in R$ then the complete set of values of $k$ for which $y=\left| f\left( \left| x \right| \right) \right|$ is non-derivable at $5$ distinict points is
$(1,4)$
$\left( 0,\frac{9}{4} \right)$
$\left( -\infty ,2 \right)$
$\left( 2,\frac{9}{4} \right)$
If ${x^2} + px + 1$ is a factor of the expression $a{x^3} + bx + c$, then
Let $r$ be a real number and $n \in N$ be such that the polynomial $2 x^2+2 x+1$ divides the polynomial $(x+1)^n-r$. Then, $(n, r)$ can be
The number of solution$(s)$ of the equation $2^x = x^2$ is
The roots of $|x - 2{|^2} + |x - 2| - 6 = 0$are
If for a posiive integer $n$ , the quadratic equation, $x\left( {x + 1} \right) + \left( {x + 1} \right)\left( {x + 2} \right) + .\;.\;.\; + \left( {x + \overline {n - 1} } \right)\left( {x + n} \right) = 10n$ has two consecutive integral solutions, then $n$ is equal to: