दि ${\log _2}x + {\log _x}2 = \frac{{10}}{3} = {\log _2}y + {\log _y}2$ तथा $x \ne y,$ तब $x + y =$
$2$
$65/8$
$37/6$
इनमें से कोई नहीं
यदि ${x^2} + x + a = 0$ के मूल $a$ से अधिक हैं, तब
समीकरण $2{x^5} - 14{x^4} + 31{x^3} - 64{x^2} + 19x + 130 = 0$ का एक मूल होगा
माना कि $p_1(x)=x^3-2020 x^2+b_1 x+c_1$ और $p_2(x)=x^3-2021 x^2+b_2 x+c_2$ दो बहुपद हैं; जिसके $\alpha$ एवं $\beta$ दो उभयनिष्ट मूल हैं. मान ले कि $q_1(x)$ एवं $q_2(x)$ बहुपद ऐसे हैं कि $p_1(x) q_1(x)+p_2(x) q_2(x)=x^2-3 x+2$. तब सही तत्समक है:
यदि द्विघाती समीकरण, $x^{2}+x \sin \theta-2 \sin \theta=0, \theta \in\left(0, \frac{\pi}{2}\right) \text {, }$ के मूल $\alpha$ तथा $\beta$ हैं, तो $\frac{\alpha^{12}+\beta^{12}}{\left(\alpha^{-12}+\beta^{-12}\right)(\alpha-\beta)^{24}}$ बराबर हैं
समीकरण ${e^x} - x - 1 = 0$ के होंगे