If $x$ be real, then the maximum value of $5 + 4x - 4{x^2}$ will be equal to
$5$
$6$
$1$
$2$
The number of integers $a$ in the interval $[1,2014]$ for which the system of equations $x+y=a$, $\frac{x^2}{x-1}+\frac{y^2}{y-1}=4$ has finitely many solutions is
If $\alpha ,\beta $ and $\gamma $ are the roots of ${x^3} + px + q = 0$, then the value of ${\alpha ^3} + {\beta ^3} + {\gamma ^3}$ is equal to
Let $\alpha$ and $\beta$ be two real numbers such that $\alpha+\beta=1$ and $\alpha \beta=-1 .$ Let $p _{ n }=(\alpha)^{ n }+(\beta)^{ n },p _{ n -1}=11$ and $p _{ n +1}=29$ for some integer $n \geq 1 .$ Then, the value of $p _{ n }^{2}$ is .... .
Number of positive integral values of $'K'$ for which the equation $k = \left| {x + \left| {2x - 1} \right|} \right| - \left| {x - \left| {2x - 1} \right|} \right|$ has exactly three real solutions, is
The roots of the equation $4{x^4} - 24{x^3} + 57{x^2} + 18x - 45 = 0$, If one of them is $3 + i\sqrt 6 $, are