यदि $x$ धनात्मक है तो $5 + 4x - 4{x^2}$ का अधिकतम मान होगा
$5$
$6$
$1$
$2$
यदि $x, y, z$ अशून्यक $(non-zero)$ वास्तविक संख्याएँ इस प्रकार हैं कि $\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=7$ तथा $\frac{y}{x}+\frac{z}{y}+\frac{x}{z}=9$, तब $\frac{x^3}{y^3}+\frac{y^3}{z^3}+\frac{z^3}{x^3}-3$ का मान क्या होगा ?
माना एक त्रिभुज की तीन भुजाओं की लंबाईयाँ $a, b, c$ है, जो $\left(a^2+b^2\right) x^2-2 b(a+c) \cdot x+\left(b^2+c^2\right)=0$ को संतुष्ट करती है। यदि $x$ के सभी संभव मानों का समुच्चय अंतराल $(\alpha, \beta)$ है, तो $12\left(\alpha^2+\beta^2\right)$ बराबर है............................
माना कि $p_1(x)=x^3-2020 x^2+b_1 x+c_1$ और $p_2(x)=x^3-2021 x^2+b_2 x+c_2$ दो बहुपद हैं; जिसके $\alpha$ एवं $\beta$ दो उभयनिष्ट मूल हैं. मान ले कि $q_1(x)$ एवं $q_2(x)$ बहुपद ऐसे हैं कि $p_1(x) q_1(x)+p_2(x) q_2(x)=x^2-3 x+2$. तब सही तत्समक है:
यदि $x, y, z$ धनात्मक वास्तविक संख्या हैं, तो निम्नलिखित में से कौन से समीकरण $x=y=z$ को संकेत करते हैं ?
$I.$ $x^3+y^3+z^3=3 x y z$
$II.$ $x^3+y^2 z+y z^2=3 x y z$
$III.$ $x^3+y^2 z+z^2 x=3 x y z$
$IV.$ $(x+y+z)^3=27 x y z$
समीकरण $|x{|^2}$-$3|x| + 2 = 0$ के वास्तविक हलों की संख्या है