- Home
- Standard 11
- Mathematics
4-2.Quadratic Equations and Inequations
hard
Let $S$ be the set of all real roots of the equation, $3^{x}\left(3^{x}-1\right)+2=\left|3^{x}-1\right|+\left|3^{x}-2\right| .$ Then $\mathrm{S}$
A
is an empty set.
B
contains at least four elements.
C
contains exactly two elements
D
is a singleton
(JEE MAIN-2020)
Solution
Let $3^{x}=t ; t>0$
$t(t-1)+2=|t-1|+|t-2|$
$t^{2}-t+2=|t-1|+|t-2|$
Case$-I $: $t<1$
$t^{2}-t+2=1-t+2-t$
$t^{2}+2=3-t$
$t^{2}+t-1=0$
$\mathrm{t}=\frac{-1 \pm \sqrt{5}}{2}$
$\mathrm{t}=\frac{\sqrt{5}-1}{2}$ is only acceptable
Case-II $: 1 \leq t<2$
$t^{2}-t+2=t-1+2-t$
$t^{2}-t+1=0$
$\mathrm{D}<0 $ no real solution
Case-III : $t \geq 2$
$t^{2}-t+2=t-1+t-2$
$\mathrm{t}^{2}-3 \mathrm{t} \quad 5=0 \Rightarrow \mathrm{D}<0$ no real solution
Standard 11
Mathematics