4-2.Quadratic Equations and Inequations
hard

Let $S$ be the set of all real roots of the equation, $3^{x}\left(3^{x}-1\right)+2=\left|3^{x}-1\right|+\left|3^{x}-2\right| .$ Then $\mathrm{S}$

A

is an empty set.

B

contains at least four elements.

C

contains exactly two elements

D

is a singleton

(JEE MAIN-2020)

Solution

Let $3^{x}=t ; t>0$

$t(t-1)+2=|t-1|+|t-2|$

$t^{2}-t+2=|t-1|+|t-2|$

Case$-I $: $t<1$

$t^{2}-t+2=1-t+2-t$

$t^{2}+2=3-t$

$t^{2}+t-1=0$

$\mathrm{t}=\frac{-1 \pm \sqrt{5}}{2}$

$\mathrm{t}=\frac{\sqrt{5}-1}{2}$ is only acceptable

Case-II $: 1 \leq t<2$

$t^{2}-t+2=t-1+2-t$

$t^{2}-t+1=0$

$\mathrm{D}<0 $ no real solution

Case-III : $t \geq 2$

$t^{2}-t+2=t-1+t-2$

$\mathrm{t}^{2}-3 \mathrm{t} \quad 5=0 \Rightarrow \mathrm{D}<0$ no real solution

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.