If $\sqrt {3{x^2} - 7x - 30} + \sqrt {2{x^2} - 7x - 5} = x + 5$,then $x$ is equal to
$2$
$3$
$6$
$5$
If $\alpha $, $\beta$, $\gamma$ are roots of ${x^3} - 2{x^2} + 3x - 2 = 0$ , then the value of$\left( {\frac{{\alpha \beta }}{{\alpha + \beta }} + \frac{{\alpha \gamma }}{{\alpha + \gamma }} + \frac{{\beta \gamma }}{{\beta + \gamma }}} \right)$ is
Let $S$ be the set of all real roots of the equation, $3^{x}\left(3^{x}-1\right)+2=\left|3^{x}-1\right|+\left|3^{x}-2\right| .$ Then $\mathrm{S}$
Complete solution set of the inequality $\left( {{{\sec }^{ - 1}}\,x - 4} \right)\left( {{{\sec }^{ 1}}\,x - 1} \right)\left( {{{\sec }^{ - 1}}\,x - 2} \right) \ge 0$ is
The solution of the equation $2{x^2} + 3x - 9 \le 0$ is given by
Suppose $a$ is a positive real number such that $a^5-a^3+a=2$. Then,