Let $p, q$ and $r$ be real numbers $(p \ne q,r \ne 0),$ such that the roots of the equation $\frac{1}{{x + p}} + \frac{1}{{x + q}} = \frac{1}{r}$ are equal in magnitude but opposite in sign, then the sum of squares of these roots is equal to .
${p^2} + {q^2} + {r^2}$
${p^2} + {q^2}$
$2({p^2} + {q^2})$
$\frac{{{p^2} + {q^2}}}{2}$
The number of roots of the equation $|x{|^2} - 7|x| + 12 = 0$ is
If for a posiive integer $n$ , the quadratic equation, $x\left( {x + 1} \right) + \left( {x + 1} \right)\left( {x + 2} \right) + .\;.\;.\; + \left( {x + \overline {n - 1} } \right)\left( {x + n} \right) = 10n$ has two consecutive integral solutions, then $n$ is equal to:
If the roots of the equation $8{x^3} - 14{x^2} + 7x - 1 = 0$ are in $G.P.$, then the roots are
The number of solution$(s)$ of the equation $2^x = x^2$ is