If $S$ is a set of $P(x)$ is polynomial of degree $ \le 2$ such that $P(0) = 0,$$P(1) = 1$,$P'(x) > 0{\rm{ }}\forall x \in (0,\,1)$, then
$S = 0$
$S = ax + (1 - a){x^2}{\rm{ }}\forall a \in (0,\infty )$
$S = ax + (1 - a){x^2}{\rm{ }}\forall a \in R$
$S = ax + (1 - a){x^2}{\rm{ }}\forall a \in (0,2)$
The number of roots of the equation $\log ( - 2x)$ $ = 2\log (x + 1)$ are
Let $a$ , $b$ , $c$ are roots of equation $x^3 + 8x + 1 = 0$ ,then the value of
$\frac{{bc}}{{(8b + 1)(8c + 1)}} + \frac{{ac}}{{(8a + 1)(8c + 1)}} + \frac{{ab}}{{(8a + 1)(8b + 1)}}$ is equal to
The condition that ${x^3} - 3px + 2q$ may be divisible by a factor of the form ${x^2} + 2ax + {a^2}$ is
Let $a, b$ be non-zero real numbers. Which of the following statements about the quadratic equation $a x^2+(a+b) x+b=0$ is necessarily true?
$I$. It has at least one negative root.
$II$. It has at least one positive root.
$III$. Both its roots are real.
The product of all real roots of the equation ${x^2} - |x| - \,6 = 0$ is