If $S$ is a set of $P(x)$ is polynomial of degree $ \le 2$ such that $P(0) = 0,$$P(1) = 1$,$P'(x) > 0{\rm{ }}\forall x \in (0,\,1)$, then
$S = 0$
$S = ax + (1 - a){x^2}{\rm{ }}\forall a \in (0,\infty )$
$S = ax + (1 - a){x^2}{\rm{ }}\forall a \in R$
$S = ax + (1 - a){x^2}{\rm{ }}\forall a \in (0,2)$
If $a \in R$ and the equation $ - 3{\left( {x - \left[ x \right]} \right)^2} + 2\left( {x - \left[ x \right]} \right) + {a^2} = 0$ (where $[x]$ denotes the greatest integer $\leq\,x$)has no integral solution ,then all possible values of $a$ lie in the interval
Let $f(x)=a x^2+b x+c$, where $a, b, c$ are integers, Suppose $f(1)=0,40 < f(6) < 50,60 < f(7) < 70$ and $1000 t < f(50) < 1000(t+1)$ for some integer $t$. Then, the value of $t$ is
The number of solution$(s)$ of the equation $2^x = x^2$ is
The number of real roots of the polynomial equation $x^4-x^2+2 x-1=0$ is
The number of real roots of the equation $x | x |-5| x +2|+6=0$, is