यदि बहुपद $P(x)$ का समुच्चय S है जिसकी घात $ \le 2$ हो, जबकि $P(0) = 0,$$P(1) = 1$,$P'(x) > 0,{\rm{ }}\forall x \in (0,\,1)$, तब
$S = 0$
$S = ax + (1 - a){x^2}{\rm{ }}\forall a \in (0,\infty )$
$S = ax + (1 - a){x^2}{\rm{ }}\forall a \in R$
$S = ax + (1 - a){x^2}{\rm{ }}\forall a \in (0,2)$
मान $\alpha, \beta$ समीकरण $x ^{2}+(20)^{1 / 4} x +(5)^{1 / 2}=0$ के दो मूल हैं। तो $\alpha^{8}+\beta^{8}$ बराबर है
यदि समीकरण $4{x^3} + 16{x^2} - 9x - 36 = 0$ के दो मूलों का योग शून्य हो तो मूल होंगे
यदि $|x - 2| + |x - 3| = 7$, तब $x =$
समीकरण ${x^2} - 5|x| + \,6 = 0$ के हलों की संख्या है
यदि $|{x^2} - x - 6| = x + 2$, तो $x$ के मान हैं