यदि बहुपद $P(x)$ का समुच्चय S है जिसकी घात $ \le 2$ हो, जबकि $P(0) = 0,$$P(1) = 1$,$P'(x) > 0,{\rm{ }}\forall x \in (0,\,1)$, तब
$S = 0$
$S = ax + (1 - a){x^2}{\rm{ }}\forall a \in (0,\infty )$
$S = ax + (1 - a){x^2}{\rm{ }}\forall a \in R$
$S = ax + (1 - a){x^2}{\rm{ }}\forall a \in (0,2)$
यदि $(x + 1)$ व्यंजक ${x^4} - (p - 3){x^3} - (3p - 5){x^2} + (2p - 7)x + 6$
का एक गुणनखण्ड हो, तो $p = $
यदि वास्तविक संख्याएँ $a, b, c$ इस प्रकार है कि $a+b+c=0$ तथा $a^2+b^2+c^2=1$, तब $(3 a+5 b-8 c)^2+(-8 a+3 b+5 c)^2+(5 a-8 b+3 c)^2$ निम्नलिखित के बराबर है
माना द्विघात समीकरण $x ^2- x -4=0$ के मूल $\alpha, \beta(\alpha > \beta)$ हैं। यदि $P _{ n }=\alpha^{ n }-\beta^{ n }, n \in N$ है, तो $\frac{ P _{15} P _{16}- P _{14} P _{16}- P _{15}^2+ P _{14} P _{15}}{ P _{13} P _{14}}$ बराबर है $.........$.
समीकरण $\log _{(3 x-1)}(x-2)=\log _{\left(9 x^2-6 x+1\right)}\left(2 x^2-10 x-2\right)$ के हल $x$ का मान निम्न है :
माना समीकरणों $\mathrm{x}^2-12 \mathrm{x}+[\mathrm{x}]+31=0$ तथा $x^2-5|x+2|-4=0$ के वास्तविक मूलों की संख्या $\mathrm{m}$ तथा $\mathrm{n}$ है, जहाँ $[\mathrm{x}]$ महत्तम पूर्णांक $\leq \mathrm{x}$ है। तो $\mathrm{m}^2+\mathrm{mn}+\mathrm{n}^2$ बराबर है_____.