- Home
- Standard 11
- Mathematics
यदि $\alpha$ तथा $\beta$, समीकरण $x ^{2}+(3)^{1 / 4} x +3^{1 / 2}=0$ के दो भिन्न मूल हैं, तो $\alpha^{96}\left(\alpha^{12}-1\right)+\beta^{96}\left(\beta^{12}-1\right)$ का मान बराबर है
$56 \times 3^{25}$
$52 \times 3^{24}$
$56 \times 3^{24}$
$28 \times 3^{25}$
Solution
As, $\left(a^{2}+\sqrt{3}\right)=-(3)^{1 / 4} \cdot \alpha$
$\Rightarrow\left(\alpha^{2}+2 \sqrt{3} \alpha^{2}+3\right)=\sqrt{3} \alpha^{2} \text { (On squaring) }$
$\left.\therefore\left(a^{4}+3\right)=(-) \sqrt{3} \alpha^{2}\right)$
$\Rightarrow \alpha^{8}+6 \alpha^{4}+9=3 \alpha^{2}$ (Again squaring)
$\therefore \alpha^{8}+3 \alpha^{4}+9=0$
$\Rightarrow \alpha^{8}=-9-3 \alpha^{4}$
(Multiply by $\left.\alpha^{4}\right)$
So, $\alpha^{12}=-9 \alpha^{4}-3 \alpha^{8}$
$\therefore \alpha^{12}=-9 \alpha^{4}-3\left(-9-3 \alpha^{4}\right)$
$\Rightarrow \alpha^{12}=-9 a^{4}+27+9 a^{4}$
Hence, $\alpha^{12}=(27)$
$\Rightarrow\left(\alpha^{12}\right)^{18}=(27)^{8}$
$\Rightarrow \alpha^{96}=(3)^{24}$
Similarly $\beta^{96}=(3)^{24}$
$\therefore \alpha^{96}\left(\alpha^{12}-1\right)+\beta^{96}\left(\beta^{12}-1\right)=(3)^{24} \times 52$