यदि $\alpha$ तथा $\beta$, समीकरण $x ^{2}+(3)^{1 / 4} x +3^{1 / 2}=0$ के दो भिन्न मूल हैं, तो $\alpha^{96}\left(\alpha^{12}-1\right)+\beta^{96}\left(\beta^{12}-1\right)$ का मान बराबर है
$56 \times 3^{25}$
$52 \times 3^{24}$
$56 \times 3^{24}$
$28 \times 3^{25}$
यदि समीकरण${x^3} + p{x^2} + qx + r = 0$ के दो मूलों का योग शून्य हेा तो $pq$ का मान होगा
समीकरणों $6 x+4 y+z=200$ एवं $x+y+z=100$ के अरुणात्मक $(non-negative)$ पूर्णांक हलों की संख्या क्या होगी ?
$A B C$ त्रिभुज में $A B, A C$ पर क्रमशः $D$ और $E$ बिन्दु हैं जिससे कि $D E B C$ के समांतर $(parallel)$ है। मान लीजिए कि BE, CD O पर प्रतिच्छेद $(intersect)$ होते है। यदि $ADE$ मौर $ODE$ त्रिभुजों का क्षेत्र फल $(area)$ क्रमश: $3$ और $1$ है तो $ABC$ का क्षेत्रफल औचित्य $(justification)$ के साथ ज्ञात करें।
दिये गए दो चर समीकरण युग्म पर विचार करें : $x+y^2=x^2+y=12$ एसे कितने वास्तविक क्रमित युग्म $(x, y)$ हैं जो इनके हल हैं?
माना $\alpha$ और $\beta$ समीकरण $5 x^{2}+6 x-2=0$ के मूल हैं यदि $S_{n}=\alpha^{n}+\beta^{n}, n=1,2,3, \ldots$, तो