यदि $\alpha, \beta $ $\gamma$ समीकरण $2{x^3} - 3{x^2} + 6x + 1 = 0$ के मूल हों, तो ${\alpha ^2} + {\beta ^2} + {\gamma ^2}$ का मान है
-$\frac{{15}}{4}$
$\frac{{15}}{4}$
$\frac{9}{4}$
$4$
समीकरण $|x{|^2} - 7|x| + 12 = 0$ के मूलों की संख्या है
यदि $a, b, c, d,-5$ तथा 5 के बीच की वास्तविक संख्याएँ इस प्रकार हैं कि $|a|=\sqrt{4-\sqrt{5-a}}, \quad|b|=\sqrt{4+\sqrt{5-b}}, \quad|c|=\sqrt{4-\sqrt{5+c}},|d|=\sqrt{4+\sqrt{5+a}}$ तब गुणांक $abcd$ क्या होगा ?
$x$ के मानों का समुच्चय जो कि $5x + 2 < 3x + 8$ तथा $\frac{{x + 2}}{{x - 1}} < 4$ को सन्तुष्ट करता है
यदि समीकरण $x^2-x-1=0$ के मूल $\alpha, \beta$ है तथा $\mathrm{S}_{\mathrm{n}}=2023 \alpha^{\mathrm{n}}+2024 \beta^n$ है, तो
यदि समीकरण ${x^3} - 9{x^2} + 14x + 24 = 0$ के दो मूलों का अनुपात $3 : 2$ हो तो मूल होंगे