यदि ${x^3} + 8 = 0$ के मूल $\alpha , \beta$ तथा $\gamma$ हैं, तो वह समीकरण जिसके मूल ${\alpha ^2},{\beta ^2}$ तथा ${\gamma ^2}$ है, होगा
${x^3} - 8 = 0$
${x^3} - 16 = 0$
${x^3} + 64 = 0$
${x^3} - 64 = 0$.
$\frac{{\log 5 + \log ({x^2} + 1)}}{{\log (x - 2)}} = 2$ के हलों की संख्या है
माना [ $t ], t$ से कम या बराबर महत्तम पूर्णांक फलन को दर्शाता है। तब $x$ में समीकरण $[ x ]^{2}+2[ x +2]-7=0$
समीकरण $|{x^2}| + |x| - 6 = 0$के मूल होंगे
वह प्रतिबंध जिसके लिये ${x^3} - 3px + 2q$,${x^2} + 2ax + {a^2}$ प्रकार के गुणनखण्ड से विभाजित होगा
माना $a$ के धन पूर्णांक मानों, जिन के लिए $\frac{a x^2+2(a+1) x+9 a+4}{x^2-8 x+32} < 0, \forall x \in \mathbb{R}$ है, का समुच्चय $\mathrm{S}$ है। तो $\mathrm{S}$ में अवयवों की संख्या है।