If $x$ is real and satisfies $x + 2 > \sqrt {x + 4} ,$ then
$x < - 2$
$x > 0$
$ - 3 < x < 0$
$ - 3 < x < 4$
The number of real values of $x$ for which the equality $\left| {\,3{x^2} + 12x + 6\,} \right| = 5x + 16$ holds good is
If the sum of the two roots of the equation $4{x^3} + 16{x^2} - 9x - 36 = 0$ is zero, then the roots are
The number of solutions of $\sin ^2 \mathrm{x}+\left(2+2 \mathrm{x}-\mathrm{x}^2\right) \sin \mathrm{x}-3(\mathrm{x}-1)^2=0$, where $-\pi \leq \mathrm{x} \leq \pi$, is....................
If graph of $y = ax^2 -bx + c$ is following, then sign of $a$, $b$, $c$ are