4-2.Quadratic Equations and Inequations
normal

$\alpha$, $\beta$ ,$\gamma$  are roots of equatiuon $x^3 -x -1 = 0$ then equation whose roots are $\frac{1}{{\beta  + \gamma }},\frac{1}{{\gamma  + \alpha }},\frac{1}{{\alpha  + \beta }}$ is

A

$x^3 -x^2 + 1 = 0$

B

$x^3 + x^2 -1 = 0$

C

$x^3 + x -1 = 0$

D

$x^3 -x + 1 = 0$

Solution

$x+\beta+\gamma=0$

$\therefore \alpha+\beta=-\gamma, \beta+\gamma=-\alpha, \gamma+\alpha=-\beta$

$\therefore$ Roots of Reqd. equation are $\frac{-1}{\alpha}, \frac{-1}{\beta}, \frac{-1}{\gamma}$

-ve recipical roots,

$\therefore \text { Replace } \mathrm{x} \rightarrow \frac{-1}{\mathrm{x}}$

$\frac{-1}{x^{3}}+\frac{1}{x}-1=0 \quad \Rightarrow-1+x^{2}-x^{3}=0$

$\text { or } x^{3}-x^{2}+1=0$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.