यदि $x$ वास्तविक है तथा $x + 2 > \sqrt {x + 4} $ को सन्तुष्ट करता है, तब
$x < - 2$
$x > 0$
$ - 3 < x < 0$
$ - 3 < x < 4$
समीकरण $\sqrt{3 x^{2}+x+5}=x-3$, जहाँ $x$ वास्तविक है, का / के
समीकरण |${x^2}$ + 4x + 3| + 2x + 5 = 0 के वास्तविक हलों की संख्या है
यदि समीकरण ${x^3} + x + 1 = 0$ के मूल $\alpha ,\beta ,\gamma $ हों, तो ${\alpha ^3}{\beta ^3}{\gamma ^3}$ का मान होगा
मान लें कि एक द्वियातीय बहुपद $P(x)=a x^2+b x+c$ के धनात्मक गुणांक क्रम से $a, b, c$ अकगणितीय श्रेढ़ी $(arithmatic\,progression)$ में है. यदि $P(x)=0$ के पूर्णाक मूल $\alpha$ और $\beta$ हों, तो $\alpha+\beta+\alpha \beta$ का मान होगा
पूर्णांक " $k$ ", जिसके लिए असमिका $x ^{2}-2(3 k -1) x +8 k ^{2}-7>0, R$ में प्रत्येक $x$ के लिए, मान्य है, है