If ${x^2} + 2ax + 10 - 3a > 0$ for all $x \in R$, then
$ - 5 < a < 2$
$a < - 5$
$a > 5$
$2 < a < 5$
The sum of integral values of $a$ such that the equation $||x\ -2|\ -|3\ -x||\ =\ 2\ -a$ has a solution
The number of real roots of the equation $\mathrm{e}^{4 \mathrm{x}}-\mathrm{e}^{3 \mathrm{x}}-4 \mathrm{e}^{2 \mathrm{x}}-\mathrm{e}^{\mathrm{x}}+1=0$ is equal to $.....$
The number of integers $n$ for which $3 x^3-25 x+n=0$ has three real roots is
Let $f: R \rightarrow R$ be the function $f(x)=\left(x-a_1\right)\left(x-a_2\right)$ $+\left(x-a_2\right)\left(x-a_3\right)+\left(x-a_3\right)\left(x-a_1\right)$ with $a_1, a_2, a_3 \in R$.Then, $f(x) \geq 0$ if and only if
If $2 + i$ is a root of the equation ${x^3} - 5{x^2} + 9x - 5 = 0$, then the other roots are