The sum of all integral values of $\mathrm{k}(\mathrm{k} \neq 0$ ) for which the equation $\frac{2}{x-1}-\frac{1}{x-2}=\frac{2}{k}$ in $x$ has no real roots, is ..... .
$95$
$76$
$66$
$70$
Consider the following two statements
$I$. Any pair of consistent liner equations in two variables must have a unique solution.
$II$. There do not exist two consecutive integers, the sum of whose squares is $365$.Then,
If $x$ is real, the function $\frac{{(x - a)(x - b)}}{{(x - c)}}$ will assume all real values, provided
Suppose $a, b, c$ are three distinct real numbers, let $P(x)=\frac{(x-b)(x-c)}{(a-b)(a-c)}+\frac{(x-c)(x-a)}{(b-c)(b-a)}+\frac{(x-a)(x-b)}{(c-a)(c-b)}$ When simplified, $P(x)$ becomes
If the sum of all the roots of the equation $e^{2 x}-11 e^{x}-45 e^{-x}+\frac{81}{2}=0$ is $\log _{ e } P$, then $p$ is equal to