If $\alpha ,\,\beta ,\,\gamma $ are the roots of the equation ${x^3} + 4x + 1 = 0,$ then ${(\alpha + \beta )^{ - 1}} + {(\beta + \gamma )^{ - 1}} + {(\gamma + \alpha )^{ - 1}} = $
$2$
$3$
$4$
$5$
If $a, b, c \in R$ and $1$ is a root of equation $ax^2 + bx + c = 0$, then the curve y $= 4ax^2 + 3bx+ 2c, a \ne 0$ intersect $x-$ axis at
If $\alpha, \beta $ and $\gamma$ are the roots of the equation $2{x^3} - 3{x^2} + 6x + 1 = 0$, then ${\alpha ^2} + {\beta ^2} + {\gamma ^2}$ is equal to
The number of solutions of $\sin ^2 \mathrm{x}+\left(2+2 \mathrm{x}-\mathrm{x}^2\right) \sin \mathrm{x}-3(\mathrm{x}-1)^2=0$, where $-\pi \leq \mathrm{x} \leq \pi$, is....................
Let $p(x)=a_0+a_1 x+\ldots+a_n x^n$ be a non-zero polynomial with integer coefficients. If $p(\sqrt{2}+\sqrt{3}+\sqrt{6})=0$, then the smallest possible value of $n$ is