यदि ${x^3} + 8 = 0$ के मूल $\alpha ,\,\beta$ तथा $\gamma $ हैं, तो वह समीकरण जिसके मूल ${\alpha ^2},{\beta ^2}$ तथा ${\gamma ^2}$ है, होगा
$2$
$3$
$4$
$5$
दिये गए दो चर समीकरण युग्म पर विचार करें : $x+y^2=x^2+y=12$ एसे कितने वास्तविक क्रमित युग्म $(x, y)$ हैं जो इनके हल हैं?
समीकरण ${4^x} - {3^{x\,\; - \;\frac{1}{2}}} = {3^{x + \frac{1}{2}}} - {2^{2x - 1}}$में $x$ का मान होगा
समीकरण $x^5\left(x^3-x^2-x+1\right)+x\left(3 x^3-4 x^2-2 x+4\right)-1$ $=0$ के भिन्न वास्तविक मूलों की संख्या है $.........$
समीकरण ${x^2} - 5|x| + \,6 = 0$ के हलों की संख्या है
अन्तराल $( - 3,\,3/2)$ में ${x^2} - 3x + 3$ का न्यूनतम मान है