If $\alpha, \beta $ and $\gamma$ are the roots of the equation $2{x^3} - 3{x^2} + 6x + 1 = 0$, then ${\alpha ^2} + {\beta ^2} + {\gamma ^2}$ is equal to
-$\frac{{15}}{4}$
$\frac{{15}}{4}$
$\frac{9}{4}$
$4$
$\alpha$, $\beta$ ,$\gamma$ are roots of equatiuon $x^3 -x -1 = 0$ then equation whose roots are $\frac{1}{{\beta + \gamma }},\frac{1}{{\gamma + \alpha }},\frac{1}{{\alpha + \beta }}$ is
The equation $x^2-4 x+[x]+3=x[x]$, where $[x]$ denotes the greatest integer function, has:
The number of real solutions of the equation $3\left(x^2+\frac{1}{x^2}\right)-2\left(x+\frac{1}{x}\right)+5=0$, is
The sum of all the solutions of the equation $(8)^{2 x}-16 \cdot(8)^x+48=0$ is :
The number of real values of $x$ for which the equality $\left| {\,3{x^2} + 12x + 6\,} \right| = 5x + 16$ holds good is