4-2.Quadratic Equations and Inequations
hard

यदि $a + b + c =1, ab + bc + ca =2$ तथा $abc =3$ हैं, तो $a ^{4}+ b ^{4}+ c ^{4}$ बराबर है ................ |

A

$13$

B

$15$

C

$17$

D

$21$

(JEE MAIN-2021)

Solution

${a^{2}+b^{2}+c^{2}=(a+b+c)^{2}-2 \Sigma a b=-3}$

${(a b+b c+c a)^{2}=\Sigma(a b)^{2}+2 a b c \sum a}$

${\Rightarrow \Sigma(a b)^{2}=-2}$

${a^{4}+b^{4}+c^{4}=\left(a^{2}+b^{2}+c^{2}\right)^{2}-2 \Sigma(a b)^{2}}$

${\quad=9-2(-2)=13}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.