यदि $a + b + c =1, ab + bc + ca =2$ तथा $abc =3$ हैं, तो $a ^{4}+ b ^{4}+ c ^{4}$ बराबर है ................ |
$13$
$15$
$17$
$21$
मान लें कि $a$ एक धनात्मक वास्तविक संख्या इस प्रकार है कि $a^5-a^3+a=2$. तब
समीकरण $\log ( - 2x)$ $ = 2\log (x + 1)$ के मूलों की संख्या होगी
समीकरण $5+\left|2^{x}-1\right|=2^{x}\left(2^{x}-2\right)$ के वास्तविक मूलों की संख्या है
माना $a$ के धन पूर्णांक मानों, जिन के लिए $\frac{a x^2+2(a+1) x+9 a+4}{x^2-8 x+32} < 0, \forall x \in \mathbb{R}$ है, का समुच्चय $\mathrm{S}$ है। तो $\mathrm{S}$ में अवयवों की संख्या है।
यदि $\alpha, \beta $ $\gamma$ समीकरण $2{x^3} - 3{x^2} + 6x + 1 = 0$ के मूल हों, तो ${\alpha ^2} + {\beta ^2} + {\gamma ^2}$ का मान है