यदि $a \in R$ तथा समीकरण $-3(x-[x])^{2}+2(x-[x])+a^{2}=0$

( जहाँ $[x]$ उस बड़े से बड़े पूर्णांक को दर्शाता है जो $\leq \, x$ है) का कोई पूर्णांकीय हल नहीं है, तो $a$ के सभी संभव मान जिस अंतराल में स्थित हैं, वह है:

  • [JEE MAIN 2014]
  • A

    $\left( { - 1,0} \right) \cup \left( {0,1} \right)$

  • B

    $\left( {1,2} \right)$

  • C

    $\left( { - 2, - 1} \right)$

  • D

    $\left( { - \infty , - 2} \right) \cup \left( {2,\infty } \right)$

Similar Questions

माना $y = \sqrt {\frac{{(x + 1)(x - 3)}}{{(x - 2)}}} $ तो $y$ के वास्तविक मानों के लिये $x$ है

  • [IIT 1980]

समीकरण $3\left(x^2+\frac{1}{x^2}\right)-2\left(x+\frac{1}{x}\right)+5=0$ की संख्या है:

  • [JEE MAIN 2023]

यदि समीकरण $8{x^3} - 14{x^2} + 7x - 1 = 0$ के मूूल गुणोत्तर श्रेणी में हों, तो मूल होंगे

समीकरण $x^4-3 x^3-2 x^2+3 x+1=10$ के सभी मूलों के घनों का योगफल है

  • [JEE MAIN 2022]

यदि $\alpha ,\beta $ समीकरण ${x^2} - ax + b = 0$ के मूल हों तथा यदि ${\alpha ^n} + {\beta ^n} = {V_n}$ हों, तो