यदि $a \in R$ तथा समीकरण $-3(x-[x])^{2}+2(x-[x])+a^{2}=0$

( जहाँ $[x]$ उस बड़े से बड़े पूर्णांक को दर्शाता है जो $\leq \, x$ है) का कोई पूर्णांकीय हल नहीं है, तो $a$ के सभी संभव मान जिस अंतराल में स्थित हैं, वह है:

  • [JEE MAIN 2014]
  • A

    $\left( { - 1,0} \right) \cup \left( {0,1} \right)$

  • B

    $\left( {1,2} \right)$

  • C

    $\left( { - 2, - 1} \right)$

  • D

    $\left( { - \infty , - 2} \right) \cup \left( {2,\infty } \right)$

Similar Questions

समीकरण ${4^x} - {3^{x\,\; - \;\frac{1}{2}}} = {3^{x + \frac{1}{2}}} - {2^{2x - 1}}$में $x$ का मान होगा

पूर्णांक " $k$ ", जिसके लिए असमिका $x ^{2}-2(3 k -1) x +8 k ^{2}-7>0, R$ में प्रत्येक $x$ के लिए, मान्य है, है

  • [JEE MAIN 2021]

यदि समीकरण $4{x^4} - 24{x^3} + 57{x^2} + 18x - 45 = 0$ का एक मूल $3 + i\sqrt 6 $ है, तब अन्य मूल होंगे

मान लें $a=\sum \limits_{n=101}^{200} 2^n \sum \limits_{k=101}^n \frac{1}{k !}$ और $b=\sum \limits_{n=101}^{200} \frac{2^{201}-2^n}{n !}$ तब $\frac{a}{b}$ है:

  • [KVPY 2020]

समीकरण $\log _{(3 x-1)}(x-2)=\log _{\left(9 x^2-6 x+1\right)}\left(2 x^2-10 x-2\right)$ के हल $x$ का मान निम्न है :

  • [KVPY 2015]